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Abstract 

 

Complex human diseases, particularly cardiovascular diseases, have a significant impact 

globally and in Cameroon. Among these diseases, stroke stands out due to its high mortality 

rate, exacerbated by the lack of medical infrastructure and appropriate technical resources 

for early diagnosis and effective management. In this context, prevention, especially through 

the identification of risk factors, is of crucial importance. Atrial fibrillation, an independent 

risk factor for stroke, increases the likelihood of being affected by this condition fivefold. 

However, its diagnosis currently relies on the manual classification of cardiac arrhythmias, 

a tedious, time-consuming method, prone to errors, and difficult to access in a country like 

Cameroon, where the doctor-to-population ratio is extremely low (1.1 doctors per 10,000 

inhabitants). 

Faced with these challenges, this research proposes an innovative method for the automatic 

recognition of atrial fibrillation, and normal heart rhythm using wavelet transform and a 

convolutional neural network (CNN) based on transfer learning with the AlexNet 

architecture. Experimental results obtained by testing the approach demonstrates interesting 

accuracy across three international databases (the MIT-BIH, Chapman ECG Database, and 

The 2017 PhysioNet/CinC Challenge databases) while being computationally efficient for 

Cameroonian healthcare infrastructure. This automated solution could revolutionize the 

mailto:kemegnemarck@gmail.com
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diagnosis of cardiac arrhythmias by reducing errors, speeding up the process, and 

addressing the lack of medical resources. 

In conclusion, this research offers a promising perspective for improving stroke prevention 

and management in Cameroon and other resource-limited regions. It also paves the way for 

future applications in other cardiovascular diseases, thereby strengthening healthcare 

systems in developing countries. 

Keywords: ECG, CNN, Stroke, atrial fibrillation, cardiac arrhythmias 

 

1. General Introduction 

1.1. Introduction 

Stroke is the second leading cause of death worldwide and in sub-Saharan Africa, 

accounting for 10% of global mortality [1]. In Cameroon, the situation is even more 

concerning, with a mortality rate of 25% within one month after the onset of stroke [1] [2]. 

Cardiovascular diseases, particularly stroke, are a major public health burden, and atrial 

fibrillation (AFIB) is a significant independent risk factor, increasing stroke risk fivefold. 

Early diagnosis of AFIB is critical, yet manual classification from ECG signals remains 

labour-intensive and reliant on expert interpretation. This challenge is exacerbated in 

resource-limited settings like Cameroon (especially remote areas), where the doctor-to-

patient ratio is critically low (1.1 doctors per 10,000 inhabitants) [3]. 

To address this gap, automated ECG analysis systems—particularly those leveraging deep 

learning—have shown promise in improving diagnostic accuracy and efficiency. This study 

proposes a simple, robust, and accurate system for automatically classifying AFIB and 

normal sinus rhythm (NSR) using a CNN-based approach with transfer learning. The 

method includes a comprehensive construction guide and employs Continuous Wavelet 

Transform (CWT) to convert 1D time-series ECG signals of varying sampling rates into 2D 

images. This transformation enables the extraction of temporal and spectral features, which 

are then classified using the AlexNet architecture. 

1.2. Literature review 

In the past decade, researchers have made significant strides in developing machine-

learning algorithms to diagnose arrhythmic diseases from ECG data. Algorithms like 

Adaptive Backpropagation Neural Networks [4], Logistic Regression [5], Random Forests 
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[6], Principal Component Analysis [7],  Support Vector Machines (SVM) [8], and k-Nearest 

Neighbours [9] have demonstrated promising results. 

Traditional methods for ECG signal classification rely heavily on feature engineering and 

conventional machine learning algorithms. However, these approaches have their 

limitations, particularly in managing the nonlinearities of heavy loads and automatically 

extracting features. Manual feature extraction in traditional methods can be prone to 

subjective factors and may not capture subtle changes in ECG signals, leading to potential 

misdiagnoses. 

Deep learning techniques have increasingly been employed for ECG signal classification to 

address these challenges, as they can automatically extract meaningful features from raw 

data and handle complex nonlinear relationships. Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), Gated Recurrent 

Units (GRUs), and Residual Neural Networks have all been explored for this purpose. CNN, 

in particular, excels in capturing spatial and temporal features, robustness to noise, 

scalability, and generalization, and flexibility in input representations [10]. 

Several authors have explored the use of Convolutional Neural Networks (CNNs) for 

classifying cardiac arrhythmias from ECG signals. Below in Table 1 is a summary of some 

works in the literature: 

Table 1: Summary of some works in the literature 

Author Approach Database Results 

Xiaolong Z. 

et al. [11] 

 

 Segmentation of single-

channel ECG signals 

based on heartbeats and 

heart rate evolution. 

 Transformation of 

heartbeats into two-beat 

coupling matrices, used 

as 2D inputs for a CNN 

classifier. 

 Simultaneous capture of 

rhythm morphology and 

beat-to-beat correlation in 

the ECG. 

 

MIT-BIH 

Arrhythmia 

 Detection of 

supraventricular 

ectopic beats (SVEB) 

and ventricular 

ectopic beats (VEB). 

 Performance for VEB 

detection: all metrics 

exceed 90%. 

 Performance for SVEB 

detection: all metrics 

exceed 70%. 
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Acharya et 

al. [12] 

 

R-wave amplitude 

processing. 

PhysioBank 

MIT-BIH 

Arrhythmia 

Classification 

accuracy: Achieved 

94.03% accuracy in 

diagnosing heartbeats 

from original ECGs and 

93.47% accuracy from 

noise-free ECGs, 

respectively. 

 

Zubair et al. 

[13] 

 

Wavelet transform MIT-BIH 

Arrhythmia 

Classification 

accuracy: 92.7%. 

 

Baloglu et al. 

[14] 

 

Wavelet transform MIT-BIH 

Arrhythmia 

Classification 

accuracy: 99.8%. 

 

 

The work of Baloglu et al. [14] stands out with an accuracy of 99.8%, demonstrating the 

effectiveness of their wavelet transform-based approach. 

Other authors, such as Acharya et al. [12] and Xiaolong Z. et al. [11], also achieved impressive 

results, with accuracies above 90%. 

These studies, associated with the study of Fatma et al. [10] and Rahul et al. [15] confirms 

that CNNs, combined with appropriate preprocessing techniques (such as segmentation, 

wavelet transform, or R-wave amplitude processing), can effectively classify cardiac 

arrhythmias without requiring manual parameter extraction. 

1.3. How an Automatic cardiac arrhythmia diagnostic system operates 

A system for automatic diagnosis of arrhythmias is generally divided into two main parts 

(The input model and the classifier) and it’s composed of a typical operational chain (as 

shown in Figure 1) that should include the steps: ECG signal acquisition, Signal 

preprocessing, Detection of QRS complexes, Extraction of relevant features, and Final 

classification of cardiac arrhythmias. 
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Figure 1: Schematic representation of an automatic arrhythmia diagnosis system 

 The acquisition of ECG signals and their transformation into a format that can be used for 

automatic processing. The acquisition is later used to build up the databases. 

 Pre-processing: During the acquisition of ECG signals, various sources of distortion can 

affect the data. The pre-processing stage aims to reduce the impact of these disturbances 

while ensuring that the essential components of the signal remain intact. Common sources 

of interference include electrical grid noise (often referred to as "50 Hz" interference), 

baseline fluctuations (caused by breathing or patient movement), and electromyographic 

noise (EMG) resulting from muscle activity. Although effective techniques have been 

developed to address the first two types of noise, EMG interference remains particularly 

challenging due to the overlap of its frequency spectrum with that of the useful ECG 

signal. 

 The detection of QRS complexes and segmentation of the cardiac cycle: This stage in 

automatic processing is both crucial and sensitive, involving the segmentation of the 

signal into consecutive homogeneous frames. This process effectively separates the 

clinically significant waveforms: the P and T waves, along with the QRS complex. 

 Parameter extraction: The goal is to identify the (vector of characteristics) derived from 

the elementary waves generated during the segmentation phase, focusing on the 

parameters that most effectively predict the patient's condition. This parameter extraction 

can be performed either in the time domain or the frequency domain. 

 Classification: By utilizing the appropriate parameters, the classification system should 

be capable of "providing the diagnosis," effectively assisting or taking over the role of 

the doctor. 

ECG signal acquisition 

 

Signal preprocessing 

 

Detection of QRS complexes 

 

Extraction of relevant features 

 

Final classification of cardiac arrhythmias 
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1.4. Performance evaluation parameters of an Automatic cardiac arrhythmia 

diagnostic system 

The performance of the detection algorithm is assessed based on four standard metrics, 

typically measured for each record: 

 True Positive (TP): The algorithm predicts an example as part of set C, and it is indeed 

part of set C. 

 True Negative (TN): The algorithm predicts an example as not part of set C, and it is 

truly not part of set C. 

 False Positive (FP): The algorithm predicts an example as part of set C, but it is not 

part of set C. 

 False Negative (FN): The algorithm predicts an example as not part of set C, but it is 

part of set C. 

Performance is evaluated based on sensitivity, specificity, and classification accuracy 

(precision). Sensitivity refers to the algorithm's ability to correctly identify an element 

belonging to class C as part of class C, while specificity measures its ability to correctly 

classify an element not in C as outside of C. These metrics are calculated as follows: 

Sensitivity (Recall)  =  
TP

TP+FN 
… … … … … … … … … … … … ..  Equation 1 

specificity (=  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  … … … … … … … … … … … … ..  Equation 2 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 … … … … … … … … … … … … .. Equation 3 

F1 = 2 ×
Precision ×  Recall 

Precision +  Recall
 … … … … … … … … … … … … . . Equation 4 

These metrics are used to evaluate the accuracy and reliability of classification systems. 

2. Materials and Methods 

2.1. Materials 

2.1.1. Hardware 

We used a HP Z-Book computer with the following features: 

 Processor: Intel(R) Core (TM) i7-4710MQ CPU @ 2.50GHz   2.50 GHz 

 Installed RAM: 32.0 GB (31.7 GB usable) 
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 Storage: 932 GB HDD TOSHIBA MQ04ABF100V -63, 233 GB SSD Samsung SSD 850 

EVO 250GB 

 Graphics Card: NVIDIA Quadro K3100M (4 GB), Intel(R) HD Graphics 4600 (113 MB) 

 System Type: 64-bit operating system, x64-based processor 

2.1.2. Software 

Operating System 

 Edition: Windows 10 Pro 

 Version: 2009 

MATLAB 

 Version: R2020a 

 WFDB tool V 0.10.0 

 Statistics and Machine Learning Toolbox V 11.7 

 Deep Learning Toolbox Model for AlexNet Network V 20.1.0 

 Deep Learning Toolbox V 14.0 

 DSP System Toolbox V 9.10 

 Wavelet Toolbox V 5.4 

2.2. Methods 

2.2.1. Dataset 

The study utilised three publicly available datasets: the MIT-BIH Atrial Fibrillation Database 

(AFDB) [16] [17], the Chapman ECG Database [18] [19], and the 2017 PhysioNet/CinC 

Challenge Database [20] [21]. The AFDB contains 25 long-term ECG recordings of patients 

with AFIB, The PhysioNet/CinC Challenge Database includes a diverse set of ECG signals, 

including normal rhythms, AFIB, and other arrhythmias. In contrast, the Chapman ECG 

Database comprises 45,152 patient ECGs, covering a range of cardiac conditions, including 

atrial fibrillation (AFIB), normal sinus rhythm (NSR), and various other arrhythmias. 

2.2.2. Preprocessing 

The ECG signals were pre-processed to ensure uniformity in sampling rates. Signals from 

the MIT-BIH database were resampled to 300 Hz and 500 Hz, those from the 

PhysioNet/CinC Challenge were resampled to 250 Hz and 500 Hz, and those from the 

Chapman ECG Database were resampled to 250 Hz and 300 Hz. The ECG signals were 

resampled to 250 Hz, 300 Hz, and 500 Hz to match native rates of source datasetswhile 

ensuring compatibility across datasets. These frequencies were selected based on the 

following considerations: 
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 250 Hz (>200): Adequate for capturing key ECG features [22] and aligns with 

clinical standards. 

 300 Hz: Aligns with common preprocessing standards for MIT-BIH data 

 500 Hz: Preserve high-frequency features such as P/T waves. 

 Computational Efficiency: reduce memory/processing demands 

Resampling was performed using MATLAB’s resample function with anti-aliasing (40% 

cutoff for downscaling) to avoid spectral distortion. The signals are segmented into 10-

second episodes, resulting in 1800 segments for training and 612 segments for validation, 

making a total of 2412 segments. 

No additional filtering was made on the 1D time series signals to increase robustness and 

generalization. 

2.2.3. Feature Extraction 

The Continuous Wavelet Transform (CWT) was applied to convert the ECG signals into 2D 

scalogram images. This transformation allows the CNN to capture both temporal and 

spectral features, enhancing the model's ability to distinguish between AFIB and NSR. 

 

Figure 2: AFIB (JS00036.mat) 10 seconds 1D time series signal and scalogram - Chapmann 

AFIB 

See supporting file 2 : MATLAB code for CWT conversion 

2.2.4. Model Architecture 

The AlexNet architecture, a renowned convolutional neural network (CNN), was utilised 

for classification as it shows outstanding performance compared to other CNN architectures 

[23]. 
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Compatible with transfer learning, AlexNet also has a balance of accuracy and is compatible 

with low-power hardware. 

Transfer learning was applied by fine-tuning the pre-trained AlexNet model to adapt it to 

the task. To customise the network for binary classification (AFIB vs. NSR), the final three 

layers were replaced with new, task-specific layers. The model's training process employed 

stochastic gradient descent with momentum (SGDM) for efficient optimisation, and its 

performance was rigorously evaluated on an independent test dataset.  

3. Results and Discussions 

3.1. Results 

The AlexNet model proved highly effective in classifying ECG signals into AFIB (Atrial 

Fibrillation) and NSR (Normal Sinus Rhythm) when tested on a combined dataset 

comprising the MIT-BIH AFIB Database, Chapman Database, and the PhysioNet/CinC 

Challenge. To optimize performance, we fine-tuned the model using a random search 

approach, exploring key hyperparameters such as learning rates (0.001 to 0.0001), batch sizes 

(16, 32, 64, and 128), and training durations (10 and 20 epochs). This systematic optimization 

ensured robust classification accuracy while preventing overfitting. The results after testing 

our approach on the different dataset are shown in Table 2, 3, 4 and 5 below. 

 

 

 

 

 

 

 

Table 2 : Training AlexNet across our general database (consisting of the three databases) 

with various hyperparameter configurations and a range of learning rates. 

Epoch MB Learning 

rate 

Performance F1 

Score 

10 128 0.001 Accuracy: 59.97%   Sensitivity: 54.25%    Specificity: 65.69% 0.58 

10 16 0.0001 Accuracy: 84.48%   Sensitivity: 87.91%    Specificity: 81.05% 0.85 
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10 32 Accuracy: 83.82%   Sensitivity: 91.83%     Specificity: 75.82% 0.85 

10 64 Accuracy: 83.17%   Sensitivity: 94.12%     Specificity: 72.22% 0.85 

10 128 Accuracy: 85.95%   Sensitivity: 92.48%     Specificity: 79.41% 0.87 

20 16 Accuracy: 82.68%   Sensitivity: 88.56%     Specificity: 76.80% 0.84 

20 32 Accuracy: 81.21%   Sensitivity: 93.46%     Specificity: 68.95% 0.83 

20 64 Accuracy: 85.29%   Sensitivity: 88.24%     Specificity: 82.35% 0.86 

20 128 Accuracy: 83.82%   Sensitivity: 94.77%    Specificity: 72.88% 0.85 

10 16 

0.00001 

Accuracy: 83.17%   Sensitivity: 91.50%    Specificity: 74.84% 0.84 

10 32 Accuracy: 83.17%   Sensitivity: 90.85%    Specificity: 75.49% 0.84 

10 64 Accuracy: 83.66%   Sensitivity: 88.24%    Specificity: 79.08% 0.84 

10 128 Accuracy: 84.80%   Sensitivity: 87.58%     Specificity: 82.03% 0.85 

20 16 Accuracy: 86.27%   Sensitivity: 89.22%    Specificity: 83.33% 0.87 

20 32 Accuracy: 83.50%   Sensitivity: 92.16%    Specificity: 74.84% 0.85 

20 64 Accuracy: 84.31%   Sensitivity: 85.95%   Specificity: 82.68% 0.85 

20 128 Accuracy: 84.80%   Sensitivity: 91.83%   Specificity: 77.78% 0.86 

See supporting image 1 for the confusion matrix of the parameters with the highest accuracy. 

See supporting image 2 for the ROC curve of the parameters with the highest accuracy. 

 

Table 3 : Training AlexNet across the 250Hz Database with various hyperparameter 

configurations and a range of learning rates. 

Epoch MB Learning rate Performance 

10 16 
0.0001 

Accuracy: 83.82%   Sensitivity: 90.20%   Specificity: 77.45% 

10 32 Accuracy: 87.25%   Sensitivity: 88.24%   Specificity: 86.27% 

10 16 

0.00001 

Accuracy: 88.24%   Sensitivity: 91.18%   Specificity: 85.29% 

10 32 Accuracy: 87.75%   Sensitivity: 84.31%   Specificity: 91.18% 

10 64 Accuracy: 84.80%   Sensitivity: 85.29%   Specificity: 84.31% 

10 128 Accuracy: 84.31%   Sensitivity: 83.33%   Specificity: 85.29% 

20 16 Accuracy: 87.75%   Sensitivity: 90.20%   Specificity: 85.29% 
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Table 4 : Training AlexNet across the 300Hz Database with various hyperparameter 

configurations and a range of learning rates. 

Epoch MB Learning rate Performance 

10 16 

0.0001 

Accuracy: 86.76%   Sensitivity: 85.29%   Specificity: 88.24% 

10 64 Accuracy: 89.22%   Sensitivity: 91.18%   Specificity: 87.25% 

20 16 Accuracy: 86.76%   Sensitivity: 88.24%   Specificity: 85.29% 

20 64 Accuracy: 88.73%   Sensitivity: 92.16%   Specificity: 85.29% 

 

Table 5 : Training AlexNet across the 500Hz Database with various hyperparameter 

configurations and a range of learning rates. 

Epoch MB Learning rate Performance 

10 16 

0.0001 

Accuracy: 76.47%   Sensitivity: 87.25%   Specificity: 65.69% 

10 64 Accuracy: 77.45%   Sensitivity: 96.08%   Specificity: 58.82% 

20 16 Accuracy: 77.45%   Sensitivity: 94.12%   Specificity: 60.78% 

20 64 Accuracy: 77.45%   Sensitivity: 93.14%   Specificity: 61.76% 

 

3.2. Discussions 

The results indicate that the combination of CWT and CNN-based transfer learning is highly 

effective for the automatic classification of AFIB and NSR across multiple Datasets. The use 

of CWT for feature extraction allows the model to capture both temporal and spectral 

information, which is crucial for accurate classification. The high accuracy (86.27%) achieved 

by the proposed system suggests that it can be a valuable tool for early AFIB detection, 

particularly in resource-limited settings where expert interpretation of ECG signals is scarce. 

Compared to other methods, the proposed approach offers several advantages, including 

robustness to noise and the ability to generalise across different datasets as it was trained 

based on 3 databases with different frequencies. This can be illustrated on Table 6 below. 
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Table 6: Comparing our approach with other in the literature  

Author Database Results 

Xiaolong Z. et al. 

[11] 

MIT-BIH Arrhythmia Overall performance of 80 % 

Acharya et al. [12] 

 

PhysioBank MIT-BIH 

Arrhythmia 

Classification accuracy: Achieved 

94.03% accuracy in diagnosing 

heartbeats from original ECGs and 

93.47% accuracy from noise-free 

ECGs, respectively. 

Zubair et al. [13] MIT-BIH Arrhythmia Classification accuracy: 92.7%. 

Baloglu et al. [14] MIT-BIH Arrhythmia Classification accuracy: 99.8%. 

 T. Mahmud et al. 

[24] 

MIT-BIH Arrhythmia Classification accuracy: 99.45%. 

Proposed Methode  MIT-BIH AFDB  

 Chapman ECG 

Database 

 The 2017 

PhysioNet/CinC 

Challenge 

Database  

Classification accuracy: 86.27%. 

 

 

While Baloglu et al. achieved 99.8% accuracy and T. Mahmud et al achieved 99.45% 

accuracy on MIT-BIH alone, our system maintains 86.27% accuracy across three 

heterogeneous datasets, demonstrating superior generalizability for real-world 

deployment. 

This study was limited to retrospective data from existing databases. Future validation with 

prospective Cameroonian patient data is needed to assess clinical utility 

4. Conclusion 

This study presents a novel approach for the automatic classification of atrial fibrillation 

(AFIB) and normal sinus rhythm (NSR) using a CNN-based model with transfer learning. 

The proposed system achieved a classification accuracy of 86.27% across cross ECG datasets 

(MIT-BIH database, the 2017 PhysioNet/CinC Challenge, and the Chapman ECG Database), 

demonstrating its potential for accurate and efficient AFIB detection. By leveraging CWT for 
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feature extraction and AlexNet for classification, the system offers a robust solution for 

accurate diagnosis of AFIB, particularly in regions like Cameroon, where limited medical 

resources and a shortage of specialists pose significant challenges in stroke prevention. 

4.1. Implications of the Study 

The proposed system can significantly improve healthcare delivery in low-resource settings 

by; Reducing diagnostic delays (Automated AFIB detection eliminates the need for time 

consuming manual ECG analysis), Lowering misdiagnosis rates (AI-based classification 

minimizes human error, ensuring more accurate diagnosis) and Enhancing accessibility 

(The method is computationally efficient, making it feasible for hospitals and clinics with 

limited infrastructure). 

4.2. Contribution to Science 

This research advances the field of AI in cardiology particularly in regions with limited 

medical resources and shortage of specialists by: 

 Validating the effectiveness of CWT, CNN and transfer learning for ECG 

classification, even with varying signal sampling rates, thus reducing the need for 

large datasets. 

 Providing a reproducible framework for future studies on arrhythmia detection in 

resource-constrained environments. 

4.3. Recommendations and suggestions for future studies. 

To maximize the impact of this work, we recommend, the model should be tested with real-

time ECG data from Cameroonian hospitals to assess its practical performance, a mobile 

compatible version should be developed to support remote diagnostics and the economic 

feasibility of deploying the model should be evaluated. 

Future work should focus on real-world implementation, ensuring that this technology 

reaches the patients who need it most. With continued refinement and collaboration, AI-

powered ECG analysis could become a cornerstone of cardiovascular care in developing 

nations. 
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7. Supporting files 

7.1. Supporting file 1: MATLAB code for classification 

 

%% ECG Signal Classification using Transfer Learning with AlexNet 

% Classifies ECG signals as AFIB (Atrial Fibrillation) or NSR (Normal Sinus Rhythm) 

% Includes clinical performance metrics: Sensitivity, Specificity, PPV, NPV and F1 score 

  

clear; close all; clc; 

  

%% 1. Data Preparation 

trainDataPath = 'C:\Users\MARC\Documents\MATLAB\AfNET\Trainning'; 

valDataPath = 'C:\Users\MARC\Documents\MATLAB\AfNET\Validation\Validation 

only 250Hz'; 

  

trainImgs = imageDatastore(trainDataPath, ... 

    'IncludeSubfolders', true, ... 

    'LabelSource', 'foldernames'); 

  

valImgs = imageDatastore(valDataPath, ... 

    'IncludeSubfolders', true, ... 

    'LabelSource', 'foldernames'); 

  

% Verify class distribution 

labelCount = countEachLabel(trainImgs); 

disp('Training set class distribution:'); 

disp(labelCount); 

  

%% 2. Network Architecture Setup 

net = alexnet; 

numClasses = 2; % AFIB (Positive), NSR (Negative) 

  

layers = [ 

    net.Layers(1:end-3) 

    fullyConnectedLayer(numClasses, ... 

        'WeightLearnRateFactor', 20, ... 

        'BiasLearnRateFactor', 20) 
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    softmaxLayer 

    classificationLayer 

]; 

  

%% 3. Training Configuration 

options = trainingOptions('sgdm', ... 

    'MiniBatchSize', 16, ... 

    'MaxEpochs', 10, ... 

    'InitialLearnRate', 1e-5, ... 

    'ValidationData', valImgs, ... 

    'Plots', 'training-progress'); 

  

%% 4. Network Training 

[netTransfer, trainInfo] = trainNetwork(trainImgs, layers, options); 

  

%% 5. Model Evaluation (Enhanced Clinical Metrics) 

[predLabels, scores] = classify(netTransfer, valImgs); 

trueLabels = valImgs.Labels; 

  

% Confusion matrix 

cm = confusionmat(trueLabels, predLabels); 

disp('Confusion Matrix:'); 

disp(cm); 

  

% Calculate metrics 

TP = cm(1,1); % True AFIB (Positives) 

FP = cm(2,1); % False AFIB 

TN = cm(2,2); % True NSR (Negatives) 

FN = cm(1,2); % False NSR 

accuracy = (TP + TN) / sum(cm(:)); 

sensitivity = TP / (TP + FN); % Recall/True Positive Rate 

specificity = TN / (TN + FP); % True Negative Rate 

PPV = TP / (TP + FP); % Positive Predictive Value (Precision) 

NPV = TN / (TN + FN); % Negative Predictive Value 

F1_score = 2*(PPV*sensitivity)/(PPV + sensitivity); % Harmonic mean 

  

% Display metrics 
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fprintf('\n--- Clinical Performance Metrics ---\n'); 

fprintf('Accuracy:    %.2f%%\n', accuracy*100); 

fprintf('Sensitivity: %.2f%% (True Positive Rate)\n', sensitivity*100); 

fprintf('Specificity: %.2f%% (True Negative Rate)\n', specificity*100); 

fprintf('PPV:         %.2f%% (Precision)\n', PPV*100); 

fprintf('NPV:         %.2f%%\n', NPV*100); 

fprintf('F1 Score:    %.2f\n', F1_score); 

  

% Enhanced confusion matrix with metrics 

figure 

confusionchart(trueLabels, predLabels, ... 

    'Title', sprintf('AFIB vs NSR Classification (Accuracy: %.1f%%)', accuracy*100), ... 

    'RowSummary', 'row-normalized', ... 

    'ColumnSummary', 'column-normalized'); 

  

% ROC Curve 

figure 

[fpr, tpr, ~, auc] = perfcurve(trueLabels, scores(:,1), 'AFIB'); 

plot(fpr, tpr, 'LineWidth', 2) 

hold on 

plot([0 1], [0 1], 'k--') % Random classifier line 

xlabel('False Positive Rate (1-Specificity)') 

ylabel('True Positive Rate (Sensitivity)') 

title(sprintf('ROC Curve (AUC = %.3f)', auc)) 

legend(sprintf('AlexNet (AUC=%.3f)', auc), 'Random', 'Location', 'southeast') 

grid on 

  

%% 6. Save Results 

save('ECG_AlexNet_Model.mat', 'netTransfer', 'trainInfo', 'cm', ... 

    'accuracy', 'sensitivity', 'specificity', 'PPV', 'NPV', 'F1_score', 'auc'); 

7.2. Supporting file 2: MATLAB code for CWT conversion 

function convertSignalsToImages(ECG_signal_data_file, database_name, segment_length, 

fs) 

%CONVERTSIGNALSTOIMAGES Converts ECG signals to CWT scalogram images 

%   Converts ECG segments to time-frequency images using Continuous Wavelet 

Transform 
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%   and saves them as JPEG files in label-specific folders 

  

    % Load ECG data 

    try 

        data = load(ECG_signal_data_file); 

        ecgDatabase = data.ecgDatabase; % Assuming structure array with 'signal' and 'label' 

    catch 

        error('Failed to load ECG data file'); 

    end 

  

    % Verify required fields 

    if ~isfield(ecgDatabase, 'signal') || ~isfield(ecgDatabase, 'label') 

        error('Input file must contain ecgDatabase with signal and label fields'); 

    end 

  

    % Create CWT filter bank 

    cwt_filter = cwtfilterbank(... 

        'SignalLength', segment_length, ... 

        'Wavelet', 'amor', ... 

        'VoicesPerOctave', 12, ... 

        'SamplingFrequency', fs); 

     

    % Create main output folder 

    main_folder = 'ECG_Images'; 

    if ~exist(main_folder, 'dir') 

        mkdir(main_folder); 

    end 

  

    % Process each ECG record 

    for record_idx = 1:length(ecgDatabase) 

        try 

            current_label = ecgDatabase(record_idx).label; 

            ecg_signal = ecgDatabase(record_idx).signal; 

             

            % Create label-specific folder (remove invalid filename characters) 

            safe_label = regexprep(current_label, '[^a-zA-Z0-9]', ''); 

            output_folder = fullfile(main_folder, sprintf('%s_%dHz', safe_label, fs)); 
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            if ~exist(output_folder, 'dir') 

                mkdir(output_folder); 

            end 

             

                % Compute CWT 

                cfs = abs(cwt_filter.wt(ecg_signal)); 

                 

                % Normalize and convert to image 

                normalized_cfs = rescale(cfs); % Scale to [0, 1] 

                uint8_cfs = uint8(255 * normalized_cfs); % Convert to 8-bit 

                im = ind2rgb(uint8_cfs, jet(256)); 

                 

                % Resize and save 

                im_resized = imresize(im, [227 227]); 

                img_name = sprintf('%s_%s_%d_%03d.jpg', database_name,safe_label,fs, 

record_idx); 

                imwrite(im_resized, fullfile(output_folder, img_name)); 

                 

        catch ME 

            warning('Error processing record %d: %s', record_idx, ME.message); 

            continue; 

        end 

    end 

     

    fprintf('Conversion complete. Images saved in %s folder.\n', main_folder); 

end 

 



    73 
Journal of Tertiary and Industrial Sciences                           Vol. 5, No. 2, 2025 
ISSN     2709-3409 (Online) 

              

 

     
7.3. Supporting image 1: Confusion matrix of our approach 
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7.4. Supporting file 2: ROC curve of the parameters with the highest accuracy. 

 

 

 

 

 

 

 


